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Abstract. In  order to design a quantum  circuit that performs a desired 
quantum  computation, it is  necessary to find  a  decomposition of the 
unitary  matrix that represents that computation  in  terms of a sequence 
of quantum gate operations. To date, such designs  have either  been  found 
by hand or by exhaustive  enumeration  of all possible  circuit  topologjks. In 
this  paper we propose an automated  approach to quantum  circuit  design 
using  search  heuristics  based  on  principles  abstracted  from  evolutionary 
genetics,  i.e.  using a genetic programming algorithm  adapted  specially 
for this problem. We demonstrate  the  method on the task of  discovering 
quantum  circuit  designs  for  quantum  teleportation. We  show that to find 
a given  known  circuit  design  (one  which was hand-crafted by a human), 
the method  considers  roughly an order of magnitude  fewer  designs than 
naive  enumeration.  In  addition,  the  method finds novel  circuit  designs 
superior to those  previously  known. 

1 Introduction: Quantum Circuit Design 

1.1 Quantum  Computa t ion  

Quantum  computation is an  emerging  area of study, which considers the pro- 
cessing of quantum information,  rather  than  the familiar classical information. 
The  state of a quantum computer is defined as a superposition of qubits. A com- 
putation on such a computer is the  unitary evolution of this  state, i.e. the  action 
of a unitary  matrix  operator U upon the  state I@). More detailed background 
on the framework of quantum information processing may be found in [12], [13], 
and [14]. 

1.2 Quan tum Gates and Circuits 

Much  recent  work has been devoted to  the construction of unitary transforma- 
tions  from sequences of more primitive ones.  Deutsch (151) introduced the  notion 
that such  simple  unitary  operators  can be thought of as elementary gates per- 
forming logical operations,  and  more sophisticated operators  can  be  thought of 
as circuits composed of gates, in analogy to  the  standard formalism for classical 
Boolean electrical circuits. This is sometimes called the network model of  com- 
putation. Following the classical computation line of analysis, in which certain 
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small  sets of gates (as  small as one gate) are known to be sufficient to represent 
all possible circuits, several researchers have  proposed  such universal gate  sets 
(as small as a single parametrized gate family) for quantum circuits ([7], [2], 
0, 0). Besides the identification of such  sets,  some  attempts have  been made 
to characterize the minimal number of gates  drawn  from  a given universal set 
required to implement a given operator U ([2], 0,  0,  0). 

1.3 Circuit Design 

Now assume we would  like build a circuit to implement  a  certain computation, 
represented by U .  Most  likely our  mechanisms for manufacturing quantum com- 
puters will  begin with allowing us to implement certain very  specific primitive 
quantum  operations  more effectively than others, for a variety of reasons which 
will be peculiar to  the technology.  Given that we have a reasonableset of gates 
from which to select circuit elements, and  perhaps  some theoretical ammunition 
regarding the minimum  number we will  need, we are still left with the following 
practical question: What is a specific  sequence of those gates that will implement 
the  operation? After we have an efficient and flexible method for  answering this 
question, we will  want to answer the following: What is a specific  sequence of 
those gates  that will implement the operation using  only the minimum  number 
of gates necessary? As the enterprise of building quantum circuits matures, we 
may eventually wish to find circuits meeting  other  measures of optimality aside 
from  parsimony.  This  paper presents a solution to  the first (and  most important) 
problem, which also indirectly addresses the issue of parsimony by allowing the 
size of the circuits considered to vary. 

2 Searching the Space of Circuit Designs 

2.1 Automated Circuit  Design 

In this  paper we are concerned not with the theoretical analysis of minimality of 
representation,  but  rather  with  the practical automated induction of a correct 
circuit representation for a target  unitary  matrix U .  We characterize the prob  
lem as a search over the space of possible circuit designs. We focus foremost  on 
demonstrating a search algorithm which  finds a correct circuit in less time  than 
it would take  to  try every possibility. Parsimony of representations will be en- 
couraged  through the thoughtful definition of heuristics in the search procedure. 
It is useful to  state here that  to avoid exhaustive enumeration, we give up  any 
worst-case guarantee of finding a correct circuit design; so far this is the  state of 
the  art in combinatorial  optimization 0. 

2.2 The Search  Space 

There  are two components to a quantum circuit design. One is the topology of 
the circuit - the  gate elements  and the connections between them.  This is a 
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discrete entity. An important complication enters when we wish to allow  topolo- 
gies to have  different  sizes,  i.e. numbers of gates, which we would  prefer to leave 
unspecified  when automating circuit design, leaving the algorithm to find the 
appropriate size. The second is  the assignment of angle  values within the gates, 
if applicable; when our gate selection set includes gates which are actually  para- 
metric families of gates,  there are continuous parameters to  be found. 

The paper of DiVincenzo and Smolin ([6]) discussed  numerical optimization 
for the discovery of parameters for two-qubit gates, within a fixed circuit topol- 
ogy,  which lead to a desired unitary computation.  They used this technique to 
show that certain  gates of interest (the Toffoli gate  and  arbitrary three-qubit 
gates) could  themselves  be  represented as circuits of two-qubit gates, by finding 
the necessary two-qubit gate parameters.  In order to find the necessary circuit 
topologies, however, all possible  topologies  were tried.  The focus of that paper 
was to show the possibility of decomposing particular  computations into  circuits 
of simpler gates; thus exhaustive enumeration was  sufficient as a tool to prove 
the point. We are interested here  in a practical and general method for efficiently 
finding correct circuit topologies  for any given operator, in other words  avoid- 
ing exhaustive  enumeration. We return to  the continuous aspect of the search 
problem later in  Section 6. 

3 Genetic  Programming: A Set of Search Heuristics 

3.1 Why Genetic Programming? 

Our search problem makes a difficult demand on any search method we might 
think to employ. First,  the search method must be amenable to problems in 
which it is  difficult to characterize the  structure of the solution space exactly. To 
clarify this  point, consider that our formulation of the problem leaves the form of 
the target unitary transformation U completely  unspecified; no deep knowledge 
of U’s substructure, behavior, relationship to  the gates used, or nature otherwise 
can be used to advantage to eliminate invalid  possibilities  in the search problem. 
This very general stance is appropriate for quantum circuit design  since human 
techniques and  intuitions about  quantum circuits have not reached a mature 
stage yet; once specific  classes of quantum circuits can  be  delineated, it  may  be 
fruitful to design search methods which take  advantage of their  extra constraints. 
Furthermore, the  quantum circuit design problem is one in  which it is difficult 
to evaluate the best next local  move to make at any given point in  the search; 
the entire solution must then be evaluated in order to evaluate the effect  of a 
local change in a circuit candidate. Genetic programming is appropriate  in  this 
setting since it relies  only on evaluations of entire circuits. 

Second, it  must be capable of considering solution structures of variable 
length. This is crucial if it is to have any hope of finding small designs; it must be 
given the  latitude  to explore solution candidates of different  sizes. A particular 
set of search heuristics, the so-called genetic  progmmming method [ll], has  the 
distinction of being the only search  technique having the capability of search- 
ing over solutions of varying structure  and size. Genetic programming is a type 
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of genetic  algorithm [8], which  in turn is a type of stochastic hill-climbing (o), 
or “go with the winners”  algorithm ([l]), along  with  simulated  annealing ([9]). 
Genetic  programming is the kind of genetic algorithm which is concerned with 
non-fixed-length topological structures,  rather  than  the simpler case of fixed- 
length solutions. 

3.2 The Parts of Genetic Programming 

Genetic  programming is a  simple set of search heuristics based  loosely on the 
principles of evolutionary genetics. One of its most distinctive traits is that  it is 
a population-based method, or one  which maintains multiple solution candidates 
simultaneously, whose  ’evolution’ paths may interact  with each other. In partic- 
ular, they may trade  substructures in an operation called “cmssowerfl, in  analogy 
to sexual reproduction.  The  method is  heavily stochastic,  sometimes  perform- 
ing  random  perturbations on solution candidates ( “mutations”), and greedily 
selecting the  current best solutions to continue pursuing via random  sampling 
weighted by solution quality ( ‘tfitness”, “survioal of the fittest”). A typical ge- 
netic programming  algorithm has this form: 

Ini t ia l ize  population with random solut ions.  

Unti l   the   s topping  cr i ter ion  has  been  reached, 
1. Evaluate  the  quali ty of each  solution  in  the  population. 
2 .  Sample from the  population,  weighted by so lu t ion   qua l i ty ,  t o  form the  

3 .  For each member of t h i s  subset of the  population,  choose  one of t h e  
‘breeding  pool’. 

following  operations  to  perform on it: 
a. Mutation  (choose with probability  p(H)) 
b. Crossover  (choose with probabili ty  p(C);  requires a par tner )  

Each iteration of the algorithm is  called a “generation”. 
Because its directional guidance is based  on evaluations of entire solutions, all 

that is  necessary to apply the algorithm to a problem is a well-defined measure of 
solution quality;  it is thus  amenable to problems in which it is  difficult to  evaluate 
the best local move to make at each partial solution (such as the circuit design 
problem). The  main power  of the  method, which distinguishes it from  simple 
stochastic local perturbation, is in the crossover operation. If the problem is one 
in  which we expect  substructures  to contain localized information, i.e. represent 
meaningful subsolutions ( a n  analogy to subroutines of a program is useful here), 
then crossover has a hope of  successfully transferring a subsolution to a different 
solution,  perhaps increasing its overall quality. In the circuit design problem, it 
seems reasonable to expect that transferable subcircuits exist. Crossover  is also 
the  main  mechanism for obtaining  topology  candidates of different  sizes. 
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4 A Genetic  Programming  Algorithm for Quantum 
Circuit  Design 

For this investigation we designed a genetic programming  algorithm tailored 
specifically for the problem of quantum circuit design. 

Fig. 1. An  example circuit. 

4.1 Representation 

Circuit  Representation. An anonymous quantum circuit is  shown in Figure 
1 as an  example of the representation we use. It is represented as the following 
nested list data  structure, which  encodes  with  each circuit element, its  name, 
parameters if any, and  embedding (the wires to which it is connected, followed 
by the number of  wires  in the circuit: three in this case): 
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Gate Selection Set. The algorithm chooses gates from  a prespecified selection 
set.  These  gates  may have  unspecified continuous angle parameters associated 
with them, which must  be adjusted by the search algorithm.  The  gates may 
also be fixed, or parameterless, gates. In a general setting where little is  known 
about  the  target  transformation,  it is sensible to select the  gate  set such that 
it forms a universal gate  set.  It may also be sensible to choose an ooercomplete 
set, one which includes a  number of gates beyond a computation-universal core 
subset.  This may be  useful for obtaining  more  compact representations, yet may 
be  more costly than having a smaller number of gate  types,  depending  on  the 
technological practicalities of quantum  hardware  manufacture which  hold at  the 
time of the design. An undercomplete set may make sense  when some known 
properties of the  target  computation allow it. 

4.2 Evaluation 
Solution  Quality  Measure. To evaluate the  quality of a circuit candidate, we 
compare its  matrix form S to the target  matrix U using the objective function 

i=l  j = 1  

This is similar  to  the objective function used  in [6]: 

Z N   Z N  

i=l j = 1  

We call f the fitness or the discrepancy; our goal is to find circuits which 
minimize the discrepancy between the circuits in our  population  and  the  target. 
When f = 0, we have found  a circuit which implements U exactly. Otherwise, 
we have found  an  approximation to U .  

We regard the most sensible evaluation measure as an  open question. A 
paper by Knill [lo] considers several measures,  many of  which are  not practically 
computable, since they  take into account all possible states on which the  operator 
may act. One  requirement of the measure chosen  is that  it yields a minimum 
(maximum) when S = U ;  this property is true of all of Knill’s measures.  There 
is a degree of arbitrariness in  specifying the proper  qualitative  behavior of the 
metric when S differs from U .  

While a measure  such as f allows the discovery of approximate circuits in a 
well-defined way, in this  paper we focus  only upon  unitary  operations which we 
can represent exactly. 

4.3 Selection 
Selection is the choosing of a subset from the population to modify  in  some way. 
Sampling is weighted by a factor derived from a circuit candidate’s  discrepancy 
score, in the way described below, and is performed at  the beginning of each 
generation. 
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A Ranking-based Scheme. Rather  than  translate  the discrepancy score of a 
circuit into  its selection probability such that  the  latter is directly proportional to 
the score, we instead first order the circuits according to their discrepancies, then 
determine selection probabilities based directly on the resulting rankings. This 
procedure  has the effect  of desensitizing the process with respect to  the  exact 
discrepancy  distribution, which tends  to exhibit extreme  ratios between the best 
candidates  and  the worst ones; we would  like to deemphasize  such differences in 
order to avoid complete  domination of the selection  process by a few candidates 
too early in the evolution, which corresponds to  entrapment in a local optimum. 

Selection Probability  Distribution. The circuits are  ranked  from 1 to N ,  the 
number of circuits in the  population, 1 denoting the best. Probabilities are de- 
fined with which to select members of the population for breeding (i.a crossover), 
mutation, and  other  operations which  yield  modified solution candidates. We  de- 
sire a functional form yielding probabilities of  selection  which  decrease as the 
ranking increases (i.e. gets worse), choosing a  quadratic form as a compromise 
between a  form yielding a very  weak selection effect (which  makes the  algorithm 
closer to a purely random search) such a linear decrease, and  a  form yielding 
a very aggressive  selection  effect (making the algorithm  more ’greedy’, or sus- 
ceptible to  short-term gains which might cause it  to .become trapped in a local 
optimum), such as an exponential decrease. 

The probability P ( r )  ofselecting the circuit having  ranking r is then ar2+br+ 
c for some a, b ,  and c .  To  determine  some values  for  these variables we set  up  some 
constraints,  namely  that P ( r )  is a true probability, i.e. CrZl ur2 f br + c = 1 ,  
that  the lowest ranked  member is  never  picked,  i.e. a N 2  + bN + c = 0, and  that 
the derivative of the probability goes to zero as r goes to N ,  guaranteeing that 
the probability function is monotonic decreasing. This set of equations yields 
values of a, b ,  and c such that 

N 

To derive the new generation’s population  from the  last generation’s mem- 
bers, selection from the described probability distribution is performed N times 
with  replacement;  note that  the population size stays constant and  that on av- 
erage circuits are  multiply represented in the next generation a number of times 
proportional to their fitness. This process  yields the parents which are fit enough 
to draw  upon for the various modifications (i.e.  search operations) that follow. 

To finish the  activity of this generation, each parent is  replaced by a new cir- 
cuit resulting from  an  operation performed  on it;  the operation to be  performed 
on each circuit is chosen from  a discrete probability distribution  determined by 
the user of the  algorithm. 
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4.4 Search  Operators  

Mutation. Mutation is the  random  perturbation of a single gate, chosen uni- 
formly at  random  from  the  gates within the operand circuit. In the case of fixed 
gates, i.e. gates  without  parameters which can vary, the selected gate’s embed- 
ding is changed by uniformly  randomly selecting new connecting lines to replace 
the old ones. 

Substitution. Substitution is similar to  mutation,  but is the replacement of 
an existing gate chosen uniformly  randomly from the gates within the  operand 
circuit,  with  another  one selected  from the  gate selection set uniformly  randomly. 
Though  replacement  can be  achieved through  an  appropriate insertion-deletion 
pair of operations, described below, its inclusion as a separate  operation allows 
its probability of occurence to be more explicitly controlled. 

Crossover. The circuit resulting from  the crossover, or mating,  operation is 
obtained by considering two parent circuits, A and B. A split point is chosen 
uniformly  randomly somewhere along each of the two parent circuits. The circuit 
resulting from crossover has  the first part of the circuit A attached  to  the second 
part of the circuit B, or the first part of the circuit B attached  to  the second 
part of the circuit A, each with probability 0.5. Note that crossover  allows the 
size of the resulting circuit to change from that of either A or B. 

Transposition. Transposition is an operation obtained by generalizing crossover; 
its result is also defined  by considering two parents A and B. A subcircuit is first 
defined by the selection of beginning  and end points in parent A. The beginning 
point is  chosen uniformly  randomly along the length of A, and  the  end  point is 
chosen uniformly  randomly from the region  between the  that point and  the end 
of A. The resulting circuit is found by inserting the subcircuit at a  uniformly 
randomly chosen point along the length of parent circuit B. This also allows the 
size of the resulting circuit to change  from that of either A or B. 

Insertion. Insertion is similar  to  transposition, except that only one  parent 
need  be considered; a randomly constructed sequence of gates is inserted at a 
random point in the  parent, resulting in a larger circuit.  The beginning and  end 
points of a subcircuit of the parent are chosen as described for the  transposition 
operator, only so that  the length of this subcircuit can  be  used as the  length 
of the  random  gate sequence to be inserted. This sequence  is constructed by 
choosing  uniformly  randomly from the  gate selection set the described number 
of gates. 

Deletion. Deletion is the inverse of insertion, in that a random  subcircuit is 
chosen from  within the  parent;  this sequence  is deleted from  the parent,  resulting 
in a smaller circuit. 
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5 Experimental Results:  Quantum Teleportation Circuits 

Quantum  teleportation  has been  identified as an  important  and interesting ap- 
plication of nonlocal effects in quantum mechanics [3]. Brassard has presented 
a circuit for the 'send' and 'receive' halves of quantum  teleportation  in [4]. This 
circuit is compact, requiring only 4 gates in the 'send' subcircuit and 6 in  the 
'receive' subcircuit.  It is  shown in Figure 2. The  gate definitions can be found in 
the example circuit shown  in 1 and  Figure 1. 

""""""""", """"""""", 
I P  IQ 

I@- 

P> 
Alice Bob 

Fig. 2. The quantum  teleportation circuit - 'send'  and 'receive' parts. 

We chose to  demonstrate  the search algorithm on the  computation  matrix 
generated by this circuit, primarily for its general interestingness. Its  small size 
gives the  advantage of tractability in the  algorithm  experimentation phase. Also, 
because we start with a circuit to  obtain  the  target  unitary  transform, we know 
that  a  compact circuit implementation exists for the problem. We can  analyze 
the  computational resources our search method requires to reproduce the hand- 
designed circuit. As discussed in Section 4.2, using a problem for  which an exact 
circuit representation is known to exist for the  gate selection set used avoids the 
need to consider the appropriateness of the  particular fitness measure  being used 
to score inexact circuits. 

5.1 The 'Send' Circuit 

The  algorithm was given the send circuit's computation  matrix  and a gate s e  
lection set consisting of L, R, and XOR. 10 runs were performed,  each requiring 
a different number of generations to find a correct circuit, as follows: 9, 26, 16, 
10, 31, 11, 20, 55, 36, 50. 26.4 generations were required on average. 

In each case a circuit was found  implementing the given computation  exactly; 
although  most were  different from the original human-designed  circuit,  all had 
4 gates  and included at least one  each of the L, R, and XOR gates  (thus none 
was necessarily any  better  than  the original circuit).  The variance of the  number 
of generations required to find a zero-discrepancy circuit is large, owing to  the 
heavily stochastic  nature of the  algorithm. 

A population size  of 100 circuit candidates was used. This is the number of 
circuit solutions which must be evaluated upon each generation of the  algorithm. 



10 Colin P. Williams and Alexander G .  Gray 

Thus, on average, about 2,640 circuits are evaluated for this  problem before an 
answer is found. 

By comparison to exhaustive enumeration, the number of possible circuit 
topologies for this problem, knowing  the number of gates  to  consider  in advance, 
can be simply  computed as follows: With 3 circuit lines, there  are 3 ways to 
embed the L gate, 3 ways to embed the R gate,  and or (p) = 6 ways to embed 
the XOR gate, yielding 3 + 3 + 6 = 12 different  choices for each gate possibility. 
If we  fix the topology size we consider to 4 gates, there are = 20,736 dif- 
ferent possible topologies to consider for this  problem, using a naive exhaustive 
approach. Since our search method actually considers circuits of many different 
sizes, a fair  comparison would  have to take  into  account every  size class of circuit 
up  to some fairly high number. Our method considered circuits at least as large 
as 13 gates;  note  that  there  are 1213 > lOI4 circuits having 13 gates! 

We note here that  this number  does  not take into account  symmetries  and 
other  structure  in  this search problem, several of  which are considered in [6 ] .  
Even accounting for these effective reductions of the search space, the compu- 
tational  advantage of a stochastic  approach such as the one  proposed is still 
quite significant. Our method  may be also be able to take advantage of such 
information for  even greater search efficiency. 

Figure 3 shows a typical plot of the average circuit discrepancy over the 
population at each generation for this  problem. The  dots on the lower portion 
of the  graph  indicate  the discrepancy of the best circuit(s) in the  population at 
each generation. 
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Fig. 3. Typical evolution plot. 

5.2 The 'Receive'  Circuit 

Experiments  with  the 'receive' part of the circuit demonstrate a further advan- 
tage of this approach to  automated circuit design  beyond  achieving a significant 
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savings in time  and  computational resources. The flexibility and generality of our 
approach allows the  human user to select a gate set of interest and see whether 
interesting circuits using those gates are  found by the search technique. This 
type of automated search has  the  potential  to find circuits which are difficult for 
even  resourceful and  expert  human circuit designers to find. This  is  true espe- 
cially when a large number of gates is involved;  however this  small  but practical 
circuit example  illustrates  that even modest  combinatorial  problems  are very 
difficult to find optimal answers for, when unaided by computer  methods. 

Rather  than  the original set of gates used  in [4] for this  circuit, consisting of 
S, T, and XOR, the genetic programming  algorithm was given the  gate selection 
set used above, consisting of L, R, and XOR. One of the resulting exact circuits 
is shown  in Figure 4. Comparing  this  to  the original ’receive’ part of the human- 
designed circuit shown in Figure 2, it is clear that  the new circuit is smaller (4 
gates versus 6), and  that  the overall teleportation circuit is more elegant since 
it requires only 3 types of gates, L, R, and XOR, rather  than 5 now that S and 
T are no  longer  needed. 

Fig.4. An efficient  circuit found by the search method. 

6 Discussion 

6.1 Genetic Programming  Search as a Tool 

At the  moment, genetic programming’s ability to work with structures of varying 
sizes makes it  the only tool available. Its  other  primary  strength is its effective- 
ness for opaque  problems, where  search  moves are difficult to  evaluate  without 
considering their effect  on the entire solution. Rather disappointingly, however, 
the method’s search heuristics are not well-understood formally. For example, is- 
sues of convergence, estimated  run-time,  optimal  parameter  settings,  and behav- 
ior dependence on problem context remain empirical issues. Aldous and Vazirani 
provide  one way in which to  understand genetic algorithms in general, placing 
them with  simulated  annealing in the class of “go with the winners” algorithms 
([l]). However, this framework addresses only the ’survival of the  fittest’ aspect 
of genetic algorithms,  not  the effect  of the crossover operation, which  is one of 
the  hallmarks of genetic algorithms. While  much has been written about genetic 



12 Colin P. Williams and Alexander G. Gray 

algorithms,  most analyses have  been empirical rather  than  formal.  Genetic pro- 
gmmming, dealing with variable-length structures, is  also surely subsumed by 
some  more general model which can be understood formally - unfortunately this 
has not yet arrived. 

On the positive side, its flexible  framework  allows the practitioner to plug  in 
his or her own heuristics, encoding  any prior knowledge of the problem the user 
may have (for example, regarding the size of the circuit or the types of gates  to 
use). The specifiable gate selection set allows the specification of only the  gates 
available to  the user. 

6.2 Extension to Continuous  Case 

The proposed search methodcan be extended to allow the inclusion of contin- 
uous, or parametrized,  gates in the  gate selection set, as opposed t o  the fixed 
gates used in these experiments. This capability requires necessitates greater 
computational effort  since an optimization must be performed to  tune  the con- 
tinuous gate  parameters of each circuit candidate  such  that  the discrepancy is 
minimized given the circuit’s discrete topology.  However, the ability to incorpo- 
rate continuous  gates holds the promise of more compact circuit solutions, as 
well as better circuit approximations where  necessary. Experiments  elucidating 
this  approach, as well as several other potentially powerful extensions, will be 
described in future  reports. 

7 Conclusions 

In this  paper we have formalized the  problem of automated  quantum circuit de- 
sign as a search problem. We proceeded to propose a search method tailored for 
this  problem. We then  demonstrated its usefulness by showing that  it is  com- 
putationally  more efficient than naive enumeration. Finally, we demonstrated 
that  it is capable of discovering  useful circuits even  when the number of gates 
considered is small, as exemplified by a novel circuit found by our  algorithm for 
quantum  teleportation. 
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